Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 316, Pages 42–54 (Mi znsl725)  

This article is cited in 5 scientific papers (total in 5 papers)

Computing the dimension of a semi-algebraic set

S. Basua, R. Pollackb, M.-F. Royc

a School of Mathematics, Georgia Institute of Technology
b Courant Institute of Mathematical Sciences
c University of Rennes 1
Full-text PDF (200 kB) Citations (5)
References:
Abstract: In this paper, we consider the problem of computing the real dimension of a given semi-algebraic subset of $\mathbf{R}^k$, where $\mathbf{R}$ is a real closed field. We prove that the dimension, $k'$, of a semi-algebraic set described by $s$ polynomials of degree $d$ in $k$ variables can be computed in time
$$ \begin{cases} s^{(k-k')k'}d^{O(k'(k-k'))},&\text{if}\ k'\geqslant k/2,\\ s^{(k-k'+1)(k'+1)}d^{O(k'(k-k'))},&\text{if}\ k'< k/2. \end{cases} $$
This result improves slightly the result proved in [22], where an algorithm with complexity bound $(sd)^{O(k'(k-k'))}$ is described for the same problem. The complexity bound of the algorithm described in this paper has a better dependence on the number, $s$, of polynomials in the input.
Received: 17.10.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 134, Issue 5, Pages 2346–2353
DOI: https://doi.org/10.1007/s10958-006-0111-0
Bibliographic databases:
UDC: 510.52+512.7
Language: English
Citation: S. Basu, R. Pollack, M.-F. Roy, “Computing the dimension of a semi-algebraic set”, Computational complexity theory. Part IX, Zap. Nauchn. Sem. POMI, 316, POMI, St. Petersburg, 2004, 42–54; J. Math. Sci. (N. Y.), 134:5 (2006), 2346–2353
Citation in format AMSBIB
\Bibitem{BasPolRoy04}
\by S.~Basu, R.~Pollack, M.-F.~Roy
\paper Computing the dimension of a~semi-algebraic set
\inbook Computational complexity theory. Part~IX
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 316
\pages 42--54
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl725}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2113057}
\zmath{https://zbmath.org/?q=an:1075.14053}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 134
\issue 5
\pages 2346--2353
\crossref{https://doi.org/10.1007/s10958-006-0111-0}
Linking options:
  • https://www.mathnet.ru/eng/znsl725
  • https://www.mathnet.ru/eng/znsl/v316/p42
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :61
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024