Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 514, Pages 55–60 (Mi znsl7241)  

On a nontrivial situation with pseudounitary eigenvalues of a positive definite matrix

Kh. D. Ikramov

Lomonosov Moscow State University
References:
Abstract: Let $I_{p,q} = I_p \oplus -I_q$. Pseudounitary eigenvalues of a positive definite matrix $A$ are the moduli of the conventional eigenvalues of the matrix $I_{p,q}A$. They are invariants of pseudounitary *-congruences performed with $A$. For a fixed $n = p + q$, the sum of the squares $\sigma_{p,q}$ of these numbers is a function of the parameter $p$. In general, its values for different $p$ can vary very significantly. However, if $A$ is the tridiagonal Toeplitz matrix with the entry $a \ge 2$ on the main diagonal and the entry $-1$ on the two neighboring diagonals, then $\sigma_{p,q}$ has a constant value for all $p$. This nontrivial fact is explained in the paper.
Key words and phrases: pseudounitary matrix, pseudounitary eigenvalues of a positive definite matrix, Cholesky decomposition.
Received: 25.04.2022
Document Type: Article
UDC: 512.643.8
Language: Russian
Citation: Kh. D. Ikramov, “On a nontrivial situation with pseudounitary eigenvalues of a positive definite matrix”, Computational methods and algorithms. Part XXXV, Zap. Nauchn. Sem. POMI, 514, POMI, St. Petersburg, 2022, 55–60
Citation in format AMSBIB
\Bibitem{Ikr22}
\by Kh.~D.~Ikramov
\paper On a nontrivial situation with pseudounitary eigenvalues of a positive definite matrix
\inbook Computational methods and algorithms. Part~XXXV
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 514
\pages 55--60
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7241}
Linking options:
  • https://www.mathnet.ru/eng/znsl7241
  • https://www.mathnet.ru/eng/znsl/v514/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :32
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024