Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 513, Pages 57–73 (Mi znsl7229)  

This article is cited in 2 scientific papers (total in 2 papers)

On Inaba extensions for two-dimensional local fields of mixed characteristic

I. B. Zhukov, O. Yu. Ivanova

Saint Petersburg State University
Full-text PDF (216 kB) Citations (2)
References:
Abstract: The paper is devoted to extensions of higher local fields determined by certain matrix equations introduced by E. Inaba. It is proved that any extension decomposable into a tower of Artin–Schreier extensions can be embedded into an Inaba extension that is a composite of the given extension and another Inaba extension. Next, any $p$-extension with elementary Abelian Galois group can be embedded into an extension with the Galois group isomorphic to a group of unipotent matrices over the field with $p$ elements.
Key words and phrases: higher local fields, two-dimensional local fields, embedding problem, Inaba equation, Artin-Schreier equation, ramification jump.
Received: 27.10.2022
Document Type: Article
UDC: 512.62, 511.222
Language: Russian
Citation: I. B. Zhukov, O. Yu. Ivanova, “On Inaba extensions for two-dimensional local fields of mixed characteristic”, Problems in the theory of representations of algebras and groups. Part 38, Zap. Nauchn. Sem. POMI, 513, POMI, St. Petersburg, 2022, 57–73
Citation in format AMSBIB
\Bibitem{ZhuIva22}
\by I.~B.~Zhukov, O.~Yu.~Ivanova
\paper On Inaba extensions for two-dimensional local fields of mixed characteristic
\inbook Problems in the theory of representations of algebras and groups. Part~38
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 513
\pages 57--73
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7229}
Linking options:
  • https://www.mathnet.ru/eng/znsl7229
  • https://www.mathnet.ru/eng/znsl/v513/p57
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :30
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024