Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 512, Pages 148–172 (Mi znsl7222)  

$B$-points of a Cantor-type set

P. A. Mozolyako

Saint-Petersburg State University, Department of Mathematics and Computer Science
References:
Abstract: In this note we study the behavior of the harmonic continuation $u$ to the upper half-plane for the characteristic function of a Cantor-type set $E$ of positive length, which is precisely the harmonic measure of such a set, near the boundary. We are interested in the description of points $x\in E$ (given in terms of their Cantor encoding) such that the mean variation of $u$ along $[x,x+i]$ – a certain weighted average of variations along $[x,x+t+i]$, $t\in\mathbb{R}$ – is finite.
Key words and phrases: Cantor-type set, vertical variation, mean variation, density points, harmonic measure.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2021-602
Received: 25.07.2022
Bibliographic databases:
Document Type: Article
UDC: 517.518.1
Language: Russian
Citation: P. A. Mozolyako, “$B$-points of a Cantor-type set”, Investigations on linear operators and function theory. Part 50, Zap. Nauchn. Sem. POMI, 512, POMI, St. Petersburg, 2022, 148–172
Citation in format AMSBIB
\Bibitem{Moz22}
\by P.~A.~Mozolyako
\paper $B$-points of a Cantor-type set
\inbook Investigations on linear operators and function theory. Part~50
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 512
\pages 148--172
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7222}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4508363}
Linking options:
  • https://www.mathnet.ru/eng/znsl7222
  • https://www.mathnet.ru/eng/znsl/v512/p148
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:58
    Full-text PDF :28
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024