Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 512, Pages 27–34 (Mi znsl7216)  

Complementing nonuniqueness sets in model spaces

A. D. Baranov

Saint Petersburg State University
References:
Abstract: It is shown that any incomplete system of reproducing kernels in a model subspace $K_\theta = H^2\ominus \theta H^2$ of the Hardy space $H^2$ can be complemented to a complete and minimal system of reproducing kernels. Thus, any nonuniqueness set for $K_\theta$ can be complemented to a minimal uniqueness set.
Key words and phrases: Hardy space, inner function, model subspace, reproducing kernels, completeness.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2021-602
Received: 29.08.2022
Document Type: Article
UDC: 517.538.2
Language: Russian
Citation: A. D. Baranov, “Complementing nonuniqueness sets in model spaces”, Investigations on linear operators and function theory. Part 50, Zap. Nauchn. Sem. POMI, 512, POMI, St. Petersburg, 2022, 27–34
Citation in format AMSBIB
\Bibitem{Bar22}
\by A.~D.~Baranov
\paper Complementing nonuniqueness sets in model spaces
\inbook Investigations on linear operators and function theory. Part~50
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 512
\pages 27--34
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7216}
Linking options:
  • https://www.mathnet.ru/eng/znsl7216
  • https://www.mathnet.ru/eng/znsl/v512/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :27
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024