|
Zapiski Nauchnykh Seminarov POMI, 2022, Volume 512, Pages 27–34
(Mi znsl7216)
|
|
|
|
Complementing nonuniqueness sets in model spaces
A. D. Baranov Saint Petersburg State University
Abstract:
It is shown that any incomplete system of reproducing kernels in a model subspace $K_\theta = H^2\ominus \theta H^2$ of the Hardy space $H^2$ can be complemented to a complete and minimal system of reproducing kernels. Thus, any nonuniqueness set for $K_\theta$ can be complemented to a minimal uniqueness set.
Key words and phrases:
Hardy space, inner function, model subspace, reproducing kernels, completeness.
Received: 29.08.2022
Citation:
A. D. Baranov, “Complementing nonuniqueness sets in model spaces”, Investigations on linear operators and function theory. Part 50, Zap. Nauchn. Sem. POMI, 512, POMI, St. Petersburg, 2022, 27–34
Linking options:
https://www.mathnet.ru/eng/znsl7216 https://www.mathnet.ru/eng/znsl/v512/p27
|
Statistics & downloads: |
Abstract page: | 76 | Full-text PDF : | 27 | References: | 19 |
|