Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 512, Pages 15–26 (Mi znsl7215)  

Spectral shift function and eigenvalues of the perturbed operator

A. R. Alievab, E. H. Eyvazovac

a Azerbaijan State University of Oil and Industry, Baku
b Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku
c Baku State University
References:
Abstract: In the space of square-integrable functions on the positive semi-axis, two positive selfadjoint operators are constructed that are generated by a one-dimensional free Hamiltonian. These operators are employed to construct a pair of spectrally absolutely continuous bounded selfadjoint operators whose difference is an operator of rank $1$. Then the perturbation determinant is used to find an explicit form of the M. G. Krein spectral shift function for this pair. It is shown that despite the $A$-smoothness of the perturbation in the sense of Hölder, the point $\lambda = 1$, where the spectral shift function has a discontinuity of the first kind, is not an eigenvalue of the perturbed operator.
Key words and phrases: spectral perturbation theory, spectral shift function, scattering matrix, operator of rank $1$.
Received: 08.06.2022
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: A. R. Aliev, E. H. Eyvazov, “Spectral shift function and eigenvalues of the perturbed operator”, Investigations on linear operators and function theory. Part 50, Zap. Nauchn. Sem. POMI, 512, POMI, St. Petersburg, 2022, 15–26
Citation in format AMSBIB
\Bibitem{AliEiv22}
\by A.~R.~Aliev, E.~H.~Eyvazov
\paper Spectral shift function and eigenvalues of the perturbed operator
\inbook Investigations on linear operators and function theory. Part~50
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 512
\pages 15--26
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7215}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4508356}
Linking options:
  • https://www.mathnet.ru/eng/znsl7215
  • https://www.mathnet.ru/eng/znsl/v512/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:72
    Full-text PDF :37
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024