Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 511, Pages 5–27 (Mi znsl7207)  

Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups

N. L. Gordeev, E. A. Egorchenkova

Herzen State Pedagogical University of Russia, Department of Mathematics
References:
Abstract: Let $G$ be a simple algebraic group over an algebraically closed field $K$ and let $N = N_G(T)$ be the normalizer of a fixed maximal torus $T\leq G$. Further, let $U$ be the unipotent radical of a fixed Borel subgroup $B$ that contains $T$ and let $U^-$ be the unipotent radical of the opposite Borel subgroup $B^-$. The Bruhat decomposition implies the decomposition $G = NU^-UN$. The Zariski closed subset $U^-U\subset G$ is isomorphic to the affine space $A_K^m$ where $m = \dim G -\dim T$ is the number of roots in the corresponding root system. Here we construct a subgroup $\mathcal{N}\leq \mathrm{Cr}_m(K)$ that “acts partially” on $A_K^m\approx\mathcal{U}$ and we show that there is one-to-one correspondence between the orbits of such a partial action and the set of double cosets $\{NgN\}$. Here we also calculate the set $\{g_\alpha\}_{\alpha \in \mathfrak A}\subset \mathcal{U}$ in the simplest case $G = \mathrm{SL}_2(\mathbb C)$.
Key words and phrases: simple algebraic group, big Gauss cell, partial actions of groups, the Cremona group of affine space.
Received: 11.10.2022
Bibliographic databases:
Document Type: Article
UDC: 512.74, 512.76, 512.54
Language: Russian
Citation: N. L. Gordeev, E. A. Egorchenkova, “Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups”, Algebra and number theory. Part 5, Zap. Nauchn. Sem. POMI, 511, POMI, St. Petersburg, 2022, 5–27
Citation in format AMSBIB
\Bibitem{GorEgo22}
\by N.~L.~Gordeev, E.~A.~Egorchenkova
\paper Double cosets $Ng N$ of normalizers of maximal tori of simple algebraic groups and orbits of partial actions of Cremona subgroups
\inbook Algebra and number theory. Part~5
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 511
\pages 5--27
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4533323}
Linking options:
  • https://www.mathnet.ru/eng/znsl7207
  • https://www.mathnet.ru/eng/znsl/v511/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:44
    Full-text PDF :13
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024