Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 510, Pages 262–281 (Mi znsl7206)  

On representation of the logarithm for arbitrary characteristic function on segments

A. A. Khartov

Smolensk State University
References:
Abstract: We consider a characteristic function of arbitrary probability law. We obtain analogs of the Lévy–Khintchine formula for it on any segment of the form $[-r,r]$ with finite $r>0$, where the characteristic function does not vanish. Using these representations we prove a criterion of belonging of the corresponding distribution function to the new wide class of so called quasi-infinitely divisible distribution functions.
Key words and phrases: characteristic functions, Lévy–Khintchine formula, infinitely divisible distributions, quasi-infinitely divisible distributions.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1620
075-15-2022-289
Received: 06.09.2022
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. A. Khartov, “On representation of the logarithm for arbitrary characteristic function on segments”, Probability and statistics. Part 32, Zap. Nauchn. Sem. POMI, 510, POMI, St. Petersburg, 2022, 262–281
Citation in format AMSBIB
\Bibitem{Kha22}
\by A.~A.~Khartov
\paper On representation of the logarithm for arbitrary characteristic function on segments
\inbook Probability and statistics. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 510
\pages 262--281
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7206}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4503201}
Linking options:
  • https://www.mathnet.ru/eng/znsl7206
  • https://www.mathnet.ru/eng/znsl/v510/p262
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :60
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024