Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 510, Pages 248–261 (Mi znsl7205)  

This article is cited in 1 scientific paper (total in 1 paper)

Mean distance between random points on the boundary of a convex body

A. S. Tokmachev

Euler International Mathematical Institute, St. Petersburg
Full-text PDF (188 kB) Citations (1)
References:
Abstract: Consider a convex figure $K$ on the plane. Let $\theta(K)$ denote the mean distance between two random points independently and uniformly selected on the boundary of $K$. The main result of the paper is that among all convex shapes of a fixed perimeter, the maximum value of $\theta(K)$ is reached at the circle and only at it. The continuity of $\theta(K)$ in the Hausdorff metric is also proved.
Key words and phrases: Geometric inequalities, Sylvester problem, integral geometry, Hausdorff distance, Fourier series, mean distance.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-289
Received: 12.09.2022
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. S. Tokmachev, “Mean distance between random points on the boundary of a convex body”, Probability and statistics. Part 32, Zap. Nauchn. Sem. POMI, 510, POMI, St. Petersburg, 2022, 248–261
Citation in format AMSBIB
\Bibitem{Tok22}
\by A.~S.~Tokmachev
\paper Mean distance between random points on the boundary of a convex body
\inbook Probability and statistics. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 510
\pages 248--261
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4503200}
Linking options:
  • https://www.mathnet.ru/eng/znsl7205
  • https://www.mathnet.ru/eng/znsl/v510/p248
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:67
    Full-text PDF :36
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024