Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 510, Pages 189–200 (Mi znsl7201)  

This article is cited in 1 scientific paper (total in 1 paper)

On the probabilistic representation of the resolvent of the two-dimensional Laplacian

A. K. Nikolaevab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (181 kB) Citations (1)
References:
Abstract: In this paper we consider a family of random linear operators that arises in the construction of a probabilistic representation of the resolvent of the two-dimensional Laplacian. It is shown that with probability $1$ the operators of this family are integral operators in $L_2(\mathbb{R}^2)$. The properties of the kernels of the corresponding operators are also investigated.
Key words and phrases: stochastic processes, two-dimensional Wiener process, the resolvent of the two-dimensional Laplacian.
Funding agency Grant number
Gazprom Neft
Received: 08.09.2022
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. K. Nikolaev, “On the probabilistic representation of the resolvent of the two-dimensional Laplacian”, Probability and statistics. Part 32, Zap. Nauchn. Sem. POMI, 510, POMI, St. Petersburg, 2022, 189–200
Citation in format AMSBIB
\Bibitem{Nik22}
\by A.~K.~Nikolaev
\paper On the probabilistic representation of the resolvent of the two-dimensional Laplacian
\inbook Probability and statistics. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 510
\pages 189--200
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7201}
Linking options:
  • https://www.mathnet.ru/eng/znsl7201
  • https://www.mathnet.ru/eng/znsl/v510/p189
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :28
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024