|
Zapiski Nauchnykh Seminarov POMI, 2022, Volume 510, Pages 172–188
(Mi znsl7200)
|
|
|
|
Integral identities for the boundary of a convex body
T. D. Moseeva Euler International Mathematical Institute, St. Petersburg
Abstract:
We present the multidimensional versions of the Pleijel and Ambartzumian–Pleijel identities. We also obtain the generalization of both the Blaschke–Petkantschin and Zähle formulae considering the case when some points are chosen inside the convex body and some on the boundary. Moreover, a version of the Zähle formula for the polytopes is derived.
Key words and phrases:
Blaschke–Petkantschin formula, Zähle formula, Pleijel identity, Ambartzumian-Pleijel identity, random chord.
Received: 31.08.2022
Citation:
T. D. Moseeva, “Integral identities for the boundary of a convex body”, Probability and statistics. Part 32, Zap. Nauchn. Sem. POMI, 510, POMI, St. Petersburg, 2022, 172–188
Linking options:
https://www.mathnet.ru/eng/znsl7200 https://www.mathnet.ru/eng/znsl/v510/p172
|
Statistics & downloads: |
Abstract page: | 80 | Full-text PDF : | 23 | References: | 16 |
|