Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 510, Pages 98–123 (Mi znsl7196)  

This article is cited in 1 scientific paper (total in 1 paper)

Mixed volume of infinite-dimensional convex compact sets

M. K. Dospolova

Euler International Mathematical Institute, St. Petersburg
Full-text PDF (303 kB) Citations (1)
References:
Abstract: Dospolova M. K. Mixed volume of infinite-dimensional convex compact sets. Let $K$ be a convex compact $GB$-subset of a separable Hilbert space $H$. Denote by $\mathrm{Spec}_k K$ the set $\{(\xi_1(h), \ldots, \xi_k(h))\colon h\in K\}\subset \mathbb{R}^k,$ where $\xi_1, \ldots, \xi_k$ are independent copies of the isonormal Gaussian process. Tsirelson showed that in this case the intrinsic volumes of $K$ satisfy the relation
\begin{equation*} V_k(K)= \frac{(2\pi)^{k/2}}{k!\kappa_k} \mathbf{E} \mathrm{Vol}_k(\mathrm{Spec}_k K). \end{equation*}
Here, $\mathbf{E} \ \mathrm{Vol}_k(\mathrm{Spec}_k K)$ is the mean volume of $\mathrm{Spec}_k K$ and $\kappa_k$ is the volume of the $k$-dimensional unit ball.
In this work, we generalize Tsirelson's theorem to the case of mixed volumes of infinite-dimensional convex compact $GB$-subsets of $H$, first introducing the notion of mixed volume for infinite-dimensional convex subsets of $H$.
Moreover, using the obtained result we compute the mixed volume of the closed convex hulls of two orthogonal Wiener spirals.
Key words and phrases: mixed volumes, intrinsic volumes, Sudakov's theorem, Tsirelson's theorem, $GB$-set, isonormal process, natural modification, Wiener spiral.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-289
Received: 16.09.2022
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: M. K. Dospolova, “Mixed volume of infinite-dimensional convex compact sets”, Probability and statistics. Part 32, Zap. Nauchn. Sem. POMI, 510, POMI, St. Petersburg, 2022, 98–123
Citation in format AMSBIB
\Bibitem{Dos22}
\by M.~K.~Dospolova
\paper Mixed volume of infinite-dimensional convex compact sets
\inbook Probability and statistics. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 510
\pages 98--123
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4503191}
Linking options:
  • https://www.mathnet.ru/eng/znsl7196
  • https://www.mathnet.ru/eng/znsl/v510/p98
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :140
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024