|
Zapiski Nauchnykh Seminarov POMI, 2022, Volume 510, Pages 98–123
(Mi znsl7196)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Mixed volume of infinite-dimensional convex compact sets
M. K. Dospolova Euler International Mathematical Institute, St. Petersburg
Abstract:
Dospolova M. K. Mixed volume of infinite-dimensional convex compact sets. Let $K$ be a convex compact $GB$-subset of a separable Hilbert space $H$. Denote by $\mathrm{Spec}_k K$ the set $\{(\xi_1(h), \ldots, \xi_k(h))\colon h\in K\}\subset \mathbb{R}^k,$ where $\xi_1, \ldots, \xi_k$ are independent copies of the isonormal Gaussian process. Tsirelson showed that in this case the intrinsic volumes of $K$ satisfy the relation \begin{equation*} V_k(K)= \frac{(2\pi)^{k/2}}{k!\kappa_k} \mathbf{E} \mathrm{Vol}_k(\mathrm{Spec}_k K). \end{equation*} Here, $\mathbf{E} \ \mathrm{Vol}_k(\mathrm{Spec}_k K)$ is the mean volume of $\mathrm{Spec}_k K$ and $\kappa_k$ is the volume of the $k$-dimensional unit ball.
In this work, we generalize Tsirelson's theorem to the case of mixed volumes of infinite-dimensional convex compact $GB$-subsets of $H$, first introducing the notion of mixed volume for infinite-dimensional convex subsets of $H$.
Moreover, using the obtained result we compute the mixed volume of the closed convex hulls of two orthogonal Wiener spirals.
Key words and phrases:
mixed volumes, intrinsic volumes, Sudakov's theorem, Tsirelson's theorem, $GB$-set, isonormal process, natural modification, Wiener spiral.
Received: 16.09.2022
Citation:
M. K. Dospolova, “Mixed volume of infinite-dimensional convex compact sets”, Probability and statistics. Part 32, Zap. Nauchn. Sem. POMI, 510, POMI, St. Petersburg, 2022, 98–123
Linking options:
https://www.mathnet.ru/eng/znsl7196 https://www.mathnet.ru/eng/znsl/v510/p98
|
Statistics & downloads: |
Abstract page: | 232 | Full-text PDF : | 140 | References: | 21 |
|