Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 510, Pages 5–27 (Mi znsl7191)  

This article is cited in 1 scientific paper (total in 1 paper)

Probabilistic approximation of a Riemann–Liouville type operator with a stability index greater than two

I. A. Alekseevab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
Full-text PDF (239 kB) Citations (1)
References:
Abstract: In this paper, we introduce Riemann-Liouville type operators for the complex index $\alpha$. A probabilistic approximation of the solution of the Cauchy problem for an evolutionary equation with a Riemann–Liouville type operator for a complex $\alpha$ is constructed.
Key words and phrases: Riemann–Liouville operator, evolutionary equation, stable distribution.
Funding agency Grant number
Russian Science Foundation 22-21-00016
Received: 02.09.2022
Document Type: Article
UDC: 519.2
Language: Russian
Citation: I. A. Alekseev, “Probabilistic approximation of a Riemann–Liouville type operator with a stability index greater than two”, Probability and statistics. Part 32, Zap. Nauchn. Sem. POMI, 510, POMI, St. Petersburg, 2022, 5–27
Citation in format AMSBIB
\Bibitem{Ale22}
\by I.~A.~Alekseev
\paper Probabilistic approximation of a Riemann--Liouville type operator with a stability index greater than two
\inbook Probability and statistics. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 510
\pages 5--27
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7191}
Linking options:
  • https://www.mathnet.ru/eng/znsl7191
  • https://www.mathnet.ru/eng/znsl/v510/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:56
    Full-text PDF :27
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024