Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 509, Pages 89–98 (Mi znsl7181)  

Two relations for the antisymmetrizer in the Hecke algebra

A. G. Bytskoab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b University of Geneva
References:
Abstract: We prove two relations for the antisymmetrizer in the Hecke algebra and derive certain restrictions imposed by these relations on unitary representations of the Hecke algebra on tensor powers of the space ${\mathbb C}^n$.
Key words and phrases: Hecke algebra, antisymmetrizer, unitary representation on the tensor space.
Funding agency Grant number
Swiss National Science Foundation
Received: 20.11.2021
Document Type: Article
UDC: 517
Language: Russian
Citation: A. G. Bytsko, “Two relations for the antisymmetrizer in the Hecke algebra”, Questions of quantum field theory and statistical physics. Part 28, Zap. Nauchn. Sem. POMI, 509, POMI, St. Petersburg, 2021, 89–98
Citation in format AMSBIB
\Bibitem{Byt21}
\by A.~G.~Bytsko
\paper Two relations for the antisymmetrizer in the Hecke algebra
\inbook Questions of quantum field theory and statistical physics. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 509
\pages 89--98
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7181}
Linking options:
  • https://www.mathnet.ru/eng/znsl7181
  • https://www.mathnet.ru/eng/znsl/v509/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:74
    Full-text PDF :22
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024