Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 509, Pages 71–88 (Mi znsl7180)  

Five-vertex model and lozenge tilings of a hexagon with a dent

I. N. Burenev

St.Petesburg Department of Mathematics Institute, Fontanka 27, St.Petersburg 191011, Russia
References:
Abstract: We consider the five-vertex model on a regular square lattice of the size $L \times M$ with boundary conditions fixed in such a way that configurations of the model are in one-to-one correspondence with the lozenge tilings of the hexagon with a dent. We obtain two determinant representations for the partition function. In the free-fermionic limit, this result implies some summation formulae for Schur functions.
Key words and phrases: five-vertex model, lozenge tilings, determinant representations, Yang–Baxter algebra.
Funding agency Grant number
Foundation for the Development of Theoretical Physics and Mathematics BASIS 21-7-1-32-2
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1620
This work is supported by the EIMI grant No. 075-15-2019-1620 and the Basis Foundation grant No. 21-7-1-32-2.
Received: 30.11.2021
Document Type: Article
UDC: 517
Language: English
Citation: I. N. Burenev, “Five-vertex model and lozenge tilings of a hexagon with a dent”, Questions of quantum field theory and statistical physics. Part 28, Zap. Nauchn. Sem. POMI, 509, POMI, St. Petersburg, 2021, 71–88
Citation in format AMSBIB
\Bibitem{Bur21}
\by I.~N.~Burenev
\paper Five-vertex model and lozenge tilings of a hexagon with a dent
\inbook Questions of quantum field theory and statistical physics. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 509
\pages 71--88
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7180}
Linking options:
  • https://www.mathnet.ru/eng/znsl7180
  • https://www.mathnet.ru/eng/znsl/v509/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:105
    Full-text PDF :51
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024