Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 317, Pages 122–141 (Mi znsl718)  

This article is cited in 1 scientific paper (total in 1 paper)

On classical $r$-matrices with parabolic carrier

V. D. Lyakhovsky

Saint-Petersburg State University
Full-text PDF (258 kB) Citations (1)
References:
Abstract: Using the graphic presentation of the dual Lie algebra $\frak{g}^{\#}(r)$ for simple algebra $\frak{g}$ it is possible to demonstrate that there always exist solutions $r_{ech}$ of the classical Yang–Baxter equation with parabolic carrier. To obtain $r_{ech}$ in the explicit form we find the dual coordinates in which the adjoint action of the carrier $\frak{g}_c$ becomes reducible. This allows to find the structure of the Jordanian $r$-matrices $r_{J}$ that are the candidates for enlarging the initial full chain $r_{fch}$ and realize the desired solution $r_{ech}$ in the factorized form $r_{ech}\approx r_{fch}+r_{J}$. We obtain the unique transformation: the canonical chain is to be substituted by a special kind of peripheric $r$-matrices: $r_{fch}\longrightarrow r_{rfch}$. To illustrate the method the case of $\frak{g}=sl(11)$ is considered in full details.
Received: 26.12.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 1, Pages 3596–3606
DOI: https://doi.org/10.1007/s10958-006-0185-8
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: V. D. Lyakhovsky, “On classical $r$-matrices with parabolic carrier”, Questions of quantum field theory and statistical physics. Part 18, Zap. Nauchn. Sem. POMI, 317, POMI, St. Petersburg, 2004, 122–141; J. Math. Sci. (N. Y.), 136:1 (2006), 3596–3606
Citation in format AMSBIB
\Bibitem{Lya04}
\by V.~D.~Lyakhovsky
\paper On classical $r$-matrices with parabolic carrier
\inbook Questions of quantum field theory and statistical physics. Part~18
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 317
\pages 122--141
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl718}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120834}
\zmath{https://zbmath.org/?q=an:1137.17301}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 136
\issue 1
\pages 3596--3606
\crossref{https://doi.org/10.1007/s10958-006-0185-8}
Linking options:
  • https://www.mathnet.ru/eng/znsl718
  • https://www.mathnet.ru/eng/znsl/v317/p122
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :62
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024