Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 508, Pages 173–184 (Mi znsl7175)  

This article is cited in 1 scientific paper (total in 1 paper)

On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$

N. D. Filonovab, P. A. Hodunovac

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
c National Research University "Higher School of Economics", St. Petersburg Branch
Full-text PDF (206 kB) Citations (1)
References:
Abstract: Equation $-\Delta u+a\partial_zu=0$ is considered in a domain in $n$-dimensional space. The coefficient in a minor term does not depend on the direction of differentiation in this term. For $a\in L_p$ with $p>\frac{n-1}2$ it is proven that a solution $u$ is locally bounded. If $p=\frac{n-1}2$ then a solution can be unbounded.
Key words and phrases: linear elliptic equations, divergence-free drift, local boundedness of solution, anysotropic Sobolev space.
Received: 23.09.2021
Document Type: Article
UDC: 517
Language: Russian
Citation: N. D. Filonov, P. A. Hodunov, “On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$”, Boundary-value problems of mathematical physics and related problems of function theory. Part 49, Zap. Nauchn. Sem. POMI, 508, POMI, St. Petersburg, 2021, 173–184
Citation in format AMSBIB
\Bibitem{FilKho21}
\by N.~D.~Filonov, P.~A.~Hodunov
\paper On the local boundedness of solutions to the equation $-\Delta u+a\partial_zu=0$
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~49
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 508
\pages 173--184
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7175}
Linking options:
  • https://www.mathnet.ru/eng/znsl7175
  • https://www.mathnet.ru/eng/znsl/v508/p173
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :58
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024