Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 507, Pages 140–156 (Mi znsl7164)  

An effective construction of a small number of equations defining an algebraic variety

A. L. Chistov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Consider a system of polynomial equations in $n$ variables of degrees at most $d$ with the set of all common zeros $V$. We suggest subexponential time algorithms (in the general case and in the case of zero characteristic) for constructing $n+1$ equations of degrees at most $d$ defining the algebraic variety $V$.
Further, we construct $n$ equations defining $V$. We give an explicit upper bound on the degrees of these $n$ equations. It is double exponential in $n$. The running time of the algorithm for constructing them is also double exponential in $n$.
Key words and phrases: algebraic varieties, effective algorithms, defining equations, number of equations.
Received: 15.09.2021
Document Type: Article
UDC: 513.6, 518.5
Language: Russian
Citation: A. L. Chistov, “An effective construction of a small number of equations defining an algebraic variety”, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Zap. Nauchn. Sem. POMI, 507, POMI, St. Petersburg, 2021, 140–156
Citation in format AMSBIB
\Bibitem{Chi21}
\by A.~L.~Chistov
\paper An effective construction of a small number of equations defining an algebraic variety
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXXIII
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 507
\pages 140--156
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7164}
Linking options:
  • https://www.mathnet.ru/eng/znsl7164
  • https://www.mathnet.ru/eng/znsl/v507/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :13
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024