Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 507, Pages 35–58 (Mi znsl7160)  

This article is cited in 1 scientific paper (total in 1 paper)

A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle

N. E. Mnëvab

a St.Petersburg Department of Steklov Institute of Mathematics, St.Petersburg, Russia
b Chebyshev Laboratory, St.Petersburg State University, St.Petersburg, Russia
Full-text PDF (551 kB) Citations (1)
References:
Abstract: We present a local combinatorial formula for the Euler class of an $n$-dimensional PL spherical fiber bundle as a rational number $e_{CH}$ associated to a chain of $n+1$ abstract subdivisions of abstract $n$-spherical PL cell complexes. The number $e_{CH}$ is a combinatorial (or matrix) Hodge-theoretic twisting cochain in Guy Hirsch's homology model of the bundle associated with the PL combinatorics of the bundle.
Key words and phrases: combinatorics of bundles, Euler class.
Funding agency Grant number
Russian Science Foundation 19-71-30002
Research is supported by the Russian Science Foundation grant 19-71-30002.
Received: 13.09.2021
Document Type: Article
UDC: 515.145.25, 515.145.82
Language: English
Citation: N. E. Mnëv, “A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle”, Representation theory, dynamical systems, combinatorial methods. Part XXXIII, Zap. Nauchn. Sem. POMI, 507, POMI, St. Petersburg, 2021, 35–58
Citation in format AMSBIB
\Bibitem{Mne21}
\by N.~E.~Mn\"ev
\paper A note on a local combinatorial formula for the Euler class of a PL spherical fiber bundle
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXXIII
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 507
\pages 35--58
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7160}
Linking options:
  • https://www.mathnet.ru/eng/znsl7160
  • https://www.mathnet.ru/eng/znsl/v507/p35
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:143
    Full-text PDF :41
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024