Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 506, Pages 223–244 (Mi znsl7152)  

On monodromy matrices for a difference Schrödinger equation on the real line with a small periodic potential

K. S. Sedovab, A. A. Fedotovc

a Euler International Mathematical Institute, St. Petersburg
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
c Saint Petersburg State University
References:
Abstract: In this paper one considers a one-dimensional difference Schrödinger equation $\psi(z+h) + \psi(z-h) + \lambda v(z) \psi(z) = E \psi(z) $ with a periodic potential $v$. In the case when the potential is real analytic, as well as in the case when, in a neighborhood of $\mathbb{R}$, the potential has a finite number of simple poles per period, for small values of the coupling constant $\lambda$, we describe the asymptotics of a monodromy matrix.
Key words and phrases: difference equations on the axis, periodic coefficients, Schrödinger equation, small coupling constant, monodromy matrix.
Funding agency Grant number
Russian Science Foundation 17-11-01069
Received: 08.11.2021
Document Type: Article
UDC: 517.9
Language: Russian
Citation: K. S. Sedov, A. A. Fedotov, “On monodromy matrices for a difference Schrödinger equation on the real line with a small periodic potential”, Mathematical problems in the theory of wave propagation. Part 51, Zap. Nauchn. Sem. POMI, 506, POMI, St. Petersburg, 2021, 223–244
Citation in format AMSBIB
\Bibitem{SedFed21}
\by K.~S.~Sedov, A.~A.~Fedotov
\paper On monodromy matrices for a difference Schr\"odinger equation on the real line with a small periodic potential
\inbook Mathematical problems in the theory of wave propagation. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 506
\pages 223--244
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7152}
Linking options:
  • https://www.mathnet.ru/eng/znsl7152
  • https://www.mathnet.ru/eng/znsl/v506/p223
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :54
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024