Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 506, Pages 113–129 (Mi znsl7148)  

Construction of solutions of Toda lattices by the classical moment problem

A. S. Mikhailovab, V. S. Mikhailovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
References:
Abstract: Making use of formulas of J. Moser for a finite-dimensional Toda lattices, we derive the evolution law for moments of the spectral measure of the semi-infinite Jacobi operator associated with the nonlinear system. This allows us to construct solutions of semi-infinite Toda lattices for a wide class of unbounded initial data by using well-known results from the classical moment problem theory.
Key words and phrases: Toda lattice, moment problem, Jacobi matrices.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00269
Volkswagen Foundation
Received: 04.11.2021
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. S. Mikhailov, V. S. Mikhailov, “Construction of solutions of Toda lattices by the classical moment problem”, Mathematical problems in the theory of wave propagation. Part 51, Zap. Nauchn. Sem. POMI, 506, POMI, St. Petersburg, 2021, 113–129
Citation in format AMSBIB
\Bibitem{MikMik21}
\by A.~S.~Mikhailov, V.~S.~Mikhailov
\paper Construction of solutions of Toda lattices by the classical moment problem
\inbook Mathematical problems in the theory of wave propagation. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 506
\pages 113--129
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7148}
Linking options:
  • https://www.mathnet.ru/eng/znsl7148
  • https://www.mathnet.ru/eng/znsl/v506/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024