Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 506, Pages 79–88 (Mi znsl7145)  

On the topology of surfaces with a common boundary and close DN-maps

D. V. Korikov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Let $\Omega$ be a smooth compact Riemann surface with the boundary $\Gamma$, аnd $\Lambda: \ H^{1}(\Gamma)\mapsto L_{2}(\Gamma)$, $\Lambda f:=\partial_{\nu}u|_{\Gamma}$ its DN-map, where $u$ obeys $\Delta_{g}u=0$ in $\Omega$ and $u=f$ on $\Gamma$. As is known [1], the genus $m$ of the surface $\Omega$ is determined by its DN-map $\Lambda$. In this article, we prove the existence of Riemann surfaces of arbitrary genus $m'>m$, with boundary $\Gamma$, and such that their DN-maps are arbitrarily close to $\Lambda$ with respect to the operator norm. In other words, an arbitrarily small perturbation of the DN-map may change the surface topology.
Key words and phrases: Riemann surfaces, topology from DN-map, electric impedance tomography.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00627
Received: 16.09.2021
Document Type: Article
UDC: 517.9
Language: Russian
Citation: D. V. Korikov, “On the topology of surfaces with a common boundary and close DN-maps”, Mathematical problems in the theory of wave propagation. Part 51, Zap. Nauchn. Sem. POMI, 506, POMI, St. Petersburg, 2021, 79–88
Citation in format AMSBIB
\Bibitem{Kor21}
\by D.~V.~Korikov
\paper On the topology of surfaces with a common boundary and close DN-maps
\inbook Mathematical problems in the theory of wave propagation. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 506
\pages 79--88
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7145}
Linking options:
  • https://www.mathnet.ru/eng/znsl7145
  • https://www.mathnet.ru/eng/znsl/v506/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:81
    Full-text PDF :22
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024