Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 506, Pages 43–56 (Mi znsl7143)  

Diffraction of short waves by a contour with Hölder singularity of curvature. Transition zone

E. A. Zlobinaab

a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We consider the short-wave diffraction of a cylindrical wave by a contour whose curvature has a Hölder type discontinuity at a point. The incidence is non-tangent at the point of singularity. In the framework of the Kirchhoff method, we find an asymptotic description for the outgoing wavefield inside the transition zone at both small and moderate distances. Analysis of ray formulas allows us to characterize applicability areas of expressions obtained.
Key words and phrases: high-frequency diffraction, non-smooth obstacles, Kirchhoff method.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1620
Received: 28.10.2021
Document Type: Article
UDC: 517.9, 534.26, 537.874.6
Language: Russian
Citation: E. A. Zlobina, “Diffraction of short waves by a contour with Hölder singularity of curvature. Transition zone”, Mathematical problems in the theory of wave propagation. Part 51, Zap. Nauchn. Sem. POMI, 506, POMI, St. Petersburg, 2021, 43–56
Citation in format AMSBIB
\Bibitem{Zlo21}
\by E.~A.~Zlobina
\paper Diffraction of short waves by a contour with H\"{o}lder singularity of curvature. Transition zone
\inbook Mathematical problems in the theory of wave propagation. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 506
\pages 43--56
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7143}
Linking options:
  • https://www.mathnet.ru/eng/znsl7143
  • https://www.mathnet.ru/eng/znsl/v506/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :37
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024