Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 506, Pages 36–42 (Mi znsl7142)  

On expansions over harmonic polynomial products in ${\mathbb R}^3$

A. F. Vakulenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: In inverse problems, an important role is played by the following fact: the functions of the form
\begin{align*} \sum_{k=1}^{n} f_k(x,y,z) g_k(x,y,z), \end{align*}
where $f_k,g_k$ are the solutions of a second order elliptic equation in a bounded domain $\Omega\subset\mathbb R^3$, constitute a dense set in $L_2(\Omega)$.
This paper deals with the Laplace equation. We show that the density does hold if $f_k$ and $g_k$ are harmonic polynomials, whereas the factors $g_k$ are invariant with respect to shifts or rotations.
Key words and phrases: harmonic polynomials in $\mathbb R^3$, axial and axial-symmetric polynomials, completeness of products.
Received: 01.11.2021
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. F. Vakulenko, “On expansions over harmonic polynomial products in ${\mathbb R}^3$”, Mathematical problems in the theory of wave propagation. Part 51, Zap. Nauchn. Sem. POMI, 506, POMI, St. Petersburg, 2021, 36–42
Citation in format AMSBIB
\Bibitem{Vak21}
\by A.~F.~Vakulenko
\paper On expansions over harmonic polynomial products in~${\mathbb R}^3$
\inbook Mathematical problems in the theory of wave propagation. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 506
\pages 36--42
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7142}
Linking options:
  • https://www.mathnet.ru/eng/znsl7142
  • https://www.mathnet.ru/eng/znsl/v506/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :40
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024