Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 505, Pages 294–311 (Mi znsl7136)  

Random algebraic numbers

A. S. Tokmachev

Saint Petersburg State University
References:
Abstract: Suppose we are given a set of real algebraic numbers of arbitrary fixed degree. Consider a family of measures on a given set. The paper presents a method for constructing a sequence of such measures that weakly converges to the Cauchy distribution. To do this, we will use the theory of random polynomials.
Key words and phrases: Random rational number, random algebraic number, Cauchy distribution, random polynomial, root density, Farey sequence.
Received: 09.11.2021
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. S. Tokmachev, “Random algebraic numbers”, Probability and statistics. Part 31, Zap. Nauchn. Sem. POMI, 505, POMI, St. Petersburg, 2021, 294–311
Citation in format AMSBIB
\Bibitem{Tok21}
\by A.~S.~Tokmachev
\paper Random algebraic numbers
\inbook Probability and statistics. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 505
\pages 294--311
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7136}
Linking options:
  • https://www.mathnet.ru/eng/znsl7136
  • https://www.mathnet.ru/eng/znsl/v505/p294
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :30
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024