Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 505, Pages 172–184 (Mi znsl7130)  

An analogue of the local time of the complex Brownian motion process

A. K. Nikolaevab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Euler International Mathematical Institute, St. Petersburg
References:
Abstract: The aim of the present paper is to construct an analogue of local time for the standard Wiener process multiplied by complex constant.
Key words and phrases: stochastic processes, local time, complex Wiener process.
Received: 15.09.2021
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. K. Nikolaev, “An analogue of the local time of the complex Brownian motion process”, Probability and statistics. Part 31, Zap. Nauchn. Sem. POMI, 505, POMI, St. Petersburg, 2021, 172–184
Citation in format AMSBIB
\Bibitem{Nik21}
\by A.~K.~Nikolaev
\paper An analogue of the local time of the complex Brownian motion process
\inbook Probability and statistics. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 505
\pages 172--184
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7130}
Linking options:
  • https://www.mathnet.ru/eng/znsl7130
  • https://www.mathnet.ru/eng/znsl/v505/p172
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :76
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024