Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 505, Pages 162–171 (Mi znsl7129)  

Random section and random simplex inequality

A. E. Litvakab, D. N. Zaporozhetsc

a Dept. of Math. and Stat. Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2G1
b Saint Petersburg State University
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Consider some convex body $K\subset\mathbb R^d$. Let $X_1,\dots, X_k$, where $k\leq d$, be random points independently and uniformly chosen in $K$, and let $\xi_k$ be a uniformly distributed random linear $k$-plane. We show that for $p\geq -d+k+1$,
$$ \mathbf E |K\cap\xi_k|^{d+p}\leq c_{d,k,p}\cdot|K|^k \mathbf E |\mathrm{conv}(0,X_1,\dots,X_k)|^p, $$
where $|\cdot|$ and $\mathrm{conv}$ denote the volume of correspondent dimension and the convex hull. The constant $c_{d,k,p}$ is such that for $k>1$ the equality holds if and only if $K$ is an ellipsoid centered at the origin, and for $k=1$ the inequality turns to equality.
If $p=0$, then the inequality reduces to the Busemann intersection inequality, and if $k=d$ – to the Busemann random simplex inequality.
We also present an affine version if this inequality which similarly generalizes the Schneider inequality and the Blaschke-Grömer inequality.
Key words and phrases: Blaschke-Grömer inequality, Blaschke-Petkantschin formula, Busemann intersection inequality, Busemann random simplex inequality, convex hull, expected volume, Furstenberg-Tzkoni formula, random section, Schneider inequality.
Received: 11.11.2021
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. E. Litvak, D. N. Zaporozhets, “Random section and random simplex inequality”, Probability and statistics. Part 31, Zap. Nauchn. Sem. POMI, 505, POMI, St. Petersburg, 2021, 162–171
Citation in format AMSBIB
\Bibitem{LitZap21}
\by A.~E.~Litvak, D.~N.~Zaporozhets
\paper Random section and random simplex inequality
\inbook Probability and statistics. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 505
\pages 162--171
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7129}
Linking options:
  • https://www.mathnet.ru/eng/znsl7129
  • https://www.mathnet.ru/eng/znsl/v505/p162
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :33
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024