Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 505, Pages 94–137 (Mi znsl7126)  

Discrete intrinsic volumes and Grassmann valuations

M. K. Dospolova

Euler International Mathematical Institute, St. Petersburg
References:
Abstract: For a convex lattice polytope $P\subset \mathbb R^d$ of dimension $d$ with vertices in $\mathbb Z^d$, denote by $L(P)$ its discrete volume which is defined as the number of integer points inside $P$. The classical result due to Ehrhart says that for a positive integer $n$, the function $L(nP)$ is a polynomial in $n$ of degree $d$ whose leading coefficient is the volume of $P$. In particular, $L(nP)$ approximates the volume of $nP$ for large $n$.
In convex geometry, one of the central notion which generalizes the volume is the intrinsic volumes. The main goal of this paper is to introduce their discrete counterparts. In particular, we show that for them the analogue of the Ehrhart result holds, where the volume is replaced by the intrinsic volume.
We also introduce and study a notion of Grassmann valuation which generalizes both the discrete volume and the solid-angle valuation intrduced by Reeve and Macdonald.
Key words and phrases: Lattice polytope, discrete volume, intrinsic volume, discrete intrinsic volume, conic intrinsic volume, Grassmann angle, Ehrhart polynomial, solid-angle polynomial, Macdonald Polynomial, Reeve's tetrahedron, solid angle, valuation.
Received: 08.11.2021
Document Type: Article
UDC: 519.2
Language: Russian
Citation: M. K. Dospolova, “Discrete intrinsic volumes and Grassmann valuations”, Probability and statistics. Part 31, Zap. Nauchn. Sem. POMI, 505, POMI, St. Petersburg, 2021, 94–137
Citation in format AMSBIB
\Bibitem{Dos21}
\by M.~K.~Dospolova
\paper Discrete intrinsic volumes and Grassmann valuations
\inbook Probability and statistics. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 505
\pages 94--137
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7126}
Linking options:
  • https://www.mathnet.ru/eng/znsl7126
  • https://www.mathnet.ru/eng/znsl/v505/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :69
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024