Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 501, Pages 102–117 (Mi znsl7118)  

Totally ordered conditional independence models

N. Gaurahaa, D. von Rosenbc

a Uppsala University, Uppsala, Sweden
b Swedish University of Agricultural Sciences, Sweden
c Linköping University, Linköping, Sweden
Abstract: A subclass of lattice conditional independence models is introduced. The new class of models is called totally ordered independence models. The class is based on an assumption that the index set which orders the random variables is a chain. It is shown that there is a jump in the chain if and only if there is a conditional independence relation. Some comparisons between the lattice conditional independence models and totally ordered independence models are presented.
Key words and phrases: multivariate regression, lattice conditional independence models, totally ordered conditional independence, totally ordered multivariate linear models.
Funding agency Grant number
Swedish Research Council
Dietrich von Rosen is supported by the Swedish Research Council (2017-03003).
Received: 31.05.2021
Document Type: Article
Language: English
Citation: N. Gauraha, D. von Rosen, “Totally ordered conditional independence models”, Zap. Nauchn. Sem. POMI, 501, 2021, 102–117
Citation in format AMSBIB
\Bibitem{GauVon21}
\by N.~Gauraha, D.~von Rosen
\paper Totally ordered conditional independence models
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 501
\pages 102--117
\mathnet{http://mi.mathnet.ru/znsl7118}
Linking options:
  • https://www.mathnet.ru/eng/znsl7118
  • https://www.mathnet.ru/eng/znsl/v501/p102
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024