Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 504, Pages 181–199 (Mi znsl7117)  

This article is cited in 2 scientific papers (total in 2 papers)

Linear operators preserving combinatorial matrix sets

P. M. Shteynerabc

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
Full-text PDF (210 kB) Citations (2)
References:
Abstract: The paper investigates linear functionals $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ preserving a set $\mathcal{M} \subseteq \mathbb{R}$, i.e., $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ such that $\phi(v) \in \mathcal{M}$ for any vector $v \in \mathbb{R}^n$ with components from $\mathcal{M}$. For different types of subsets of real numbers, characterizations of linear functionals that preserve them are obtained. In particular, the sets $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_+, \mathbb{Q}_+, \mathbb{R}_+$, several infinite sets of integers, bounded and unbounded intervals, and finite subsets of real numbers are considered.
A characterization of linear functionals preserving a set $\mathcal{M}$ also allows one to describe linear operators preserving matrices with entries from this set, i.e., operators $\Phi : M_{n, m} \rightarrow M_{n, m}$ such that all entries of a matrix $\Phi(A)$ belong to $\mathcal{M}$ for any matrix $A \in M_{n, m}$ with all entries in $\mathcal{M}$. As an example, linear operators preserving $(0, 1)$, $(\pm 1)$, and $(\pm 1, 0)$-matrice are characterized.
Key words and phrases: linear preservers, linear operators.
Received: 03.10.2021
Document Type: Article
UDC: 512.643
Language: Russian
Citation: P. M. Shteyner, “Linear operators preserving combinatorial matrix sets”, Computational methods and algorithms. Part XXXIV, Zap. Nauchn. Sem. POMI, 504, POMI, St. Petersburg, 2021, 181–199
Citation in format AMSBIB
\Bibitem{Sht21}
\by P.~M.~Shteyner
\paper Linear operators preserving combinatorial matrix sets
\inbook Computational methods and algorithms. Part~XXXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 504
\pages 181--199
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7117}
Linking options:
  • https://www.mathnet.ru/eng/znsl7117
  • https://www.mathnet.ru/eng/znsl/v504/p181
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:57
    Full-text PDF :12
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024