Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 504, Pages 70–101 (Mi znsl7112)  

Further block generalizations of Nekrasov matrices

L. Yu. Kolotilina

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: The paper continues the study of block generalizations of Nekrasov matrices and introduces two new classes of the so-called $\widetilde{\mathrm{G}}\mathrm{N}$ and $\mathrm{BJN}$ matrices and compares them with the previously introduced class of $\mathrm{GN}$ matrices. Different properties of $\widetilde{\mathrm{G}}\mathrm{N}$ and $\mathrm{BJN}$ matrices are established. In particular, it is proved that the classes $\{\widetilde{\mathrm{G}}\mathrm{N}\}$ and $\{\mathrm{BJN}\}$ are closed with respect to Schur complements and monotone with respect to block partitioning. Also upper bounds for the norms of inverses $\|A^{-1}\|_\infty$ of $\mathrm{GN}$, $\widetilde{\mathrm{G}}\mathrm{N}$, and $\mathrm{BJN}$ matrices $A$ are considered. General results obtained are specialized to the case of block two-by-two matrices with scalar first diagonal block.
Key words and phrases: Nekrasov matrices, $\mathrm{GN}$ matrices, $\widetilde{\mathrm{G}}\mathrm{N}$, $\mathrm{BJN}$ matrices, nonsingular $\mathcal{H}$-matrices, $\mathcal{M}$-matrices, $\mathrm{SDD}$ matrices, upper bounds for the inverse.
Received: 20.10.2021
Document Type: Article
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “Further block generalizations of Nekrasov matrices”, Computational methods and algorithms. Part XXXIV, Zap. Nauchn. Sem. POMI, 504, POMI, St. Petersburg, 2021, 70–101
Citation in format AMSBIB
\Bibitem{Kol21}
\by L.~Yu.~Kolotilina
\paper Further block generalizations of Nekrasov matrices
\inbook Computational methods and algorithms. Part~XXXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 504
\pages 70--101
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7112}
Linking options:
  • https://www.mathnet.ru/eng/znsl7112
  • https://www.mathnet.ru/eng/znsl/v504/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:86
    Full-text PDF :20
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024