Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 504, Pages 61–69 (Mi znsl7111)  

Symplectic eigenvalues and singular values of symmetric matrices

Kh. D. Ikramova, A. M. Nazarib

a Lomonosov Moscow State University
b Arak University
References:
Abstract: Williamson's theorem on the symplectic eigenvalues of symmetric positive definite matrices is interpreted in terms of special operators of the real symplectic space and their spectra. A relation connecting the conventional and symplectic eigenvalues of a given matrix is derived.
Key words and phrases: congruence transformation, similarity transformation, symplectic matrix, Hamiltonian matrix, $J$-symmetric matrix, Schur inequality.
Received: 01.09.2021
Document Type: Article
UDC: 512.643
Language: Russian
Citation: Kh. D. Ikramov, A. M. Nazari, “Symplectic eigenvalues and singular values of symmetric matrices”, Computational methods and algorithms. Part XXXIV, Zap. Nauchn. Sem. POMI, 504, POMI, St. Petersburg, 2021, 61–69
Citation in format AMSBIB
\Bibitem{IkrNaz21}
\by Kh.~D.~Ikramov, A.~M.~Nazari
\paper Symplectic eigenvalues and singular values of symmetric matrices
\inbook Computational methods and algorithms. Part~XXXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 504
\pages 61--69
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7111}
Linking options:
  • https://www.mathnet.ru/eng/znsl7111
  • https://www.mathnet.ru/eng/znsl/v504/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :70
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024