|
Zapiski Nauchnykh Seminarov POMI, 2021, Volume 504, Pages 61–69
(Mi znsl7111)
|
|
|
|
Symplectic eigenvalues and singular values of symmetric matrices
Kh. D. Ikramova, A. M. Nazarib a Lomonosov Moscow State University
b Arak University
Abstract:
Williamson's theorem on the symplectic eigenvalues of symmetric positive definite matrices is interpreted in terms of special operators of the real symplectic space and their spectra. A relation connecting the conventional and symplectic eigenvalues of a given matrix is derived.
Key words and phrases:
congruence transformation, similarity transformation, symplectic matrix, Hamiltonian matrix, $J$-symmetric matrix, Schur inequality.
Received: 01.09.2021
Citation:
Kh. D. Ikramov, A. M. Nazari, “Symplectic eigenvalues and singular values of symmetric matrices”, Computational methods and algorithms. Part XXXIV, Zap. Nauchn. Sem. POMI, 504, POMI, St. Petersburg, 2021, 61–69
Linking options:
https://www.mathnet.ru/eng/znsl7111 https://www.mathnet.ru/eng/znsl/v504/p61
|
Statistics & downloads: |
Abstract page: | 147 | Full-text PDF : | 70 | References: | 38 |
|