Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 503, Pages 154–171 (Mi znsl7106)  

Polynomial approximations in a convex domain in $\mathbb C^n$ with the exponential decaying inside

N. A. Shirokovab

a Saint Petersburg State University
b National Research University "Higher School of Economics", St. Petersburg Branch
References:
Abstract: Let $\Omega$ be convex domain in $\mathbb C^n$ satisfying some restrictions, $f$ be holomorphic in $\Omega$ and continuons in $\overline{\Omega}$, $f\in H^{r+\omega}(\overline{\Omega})$ with a modulus of continuity $\omega$. Then there are polynomials $P_N$, $\deg P_N\le N$, such that $ |f(z)-P_N(z)| \le cN^{-r}\omega(\frac{1}{N})$, $z \in \overline{\Omega}$, and $|f(z)-P_N(z)| \le c \exp(-c_0(K)N)$, $z\in K\subset \Omega$, where $K$ is any compact strictly inside $\Omega$.
Key words and phrases: polynomial approximation, convex domains in $\mathbb C^n$, holomorphic functions.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00209
Received: 09.06.2021
Document Type: Article
UDC: 517.547
Language: Russian
Citation: N. A. Shirokov, “Polynomial approximations in a convex domain in $\mathbb C^n$ with the exponential decaying inside”, Investigations on linear operators and function theory. Part 49, Zap. Nauchn. Sem. POMI, 503, POMI, St. Petersburg, 2021, 154–171
Citation in format AMSBIB
\Bibitem{Shi21}
\by N.~A.~Shirokov
\paper Polynomial approximations in a convex domain in $\mathbb C^n$ with the exponential decaying inside
\inbook Investigations on linear operators and function theory. Part~49
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 503
\pages 154--171
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7106}
Linking options:
  • https://www.mathnet.ru/eng/znsl7106
  • https://www.mathnet.ru/eng/znsl/v503/p154
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:94
    Full-text PDF :24
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024