|
Zapiski Nauchnykh Seminarov POMI, 2021, Volume 503, Pages 113–120
(Mi znsl7103)
|
|
|
|
A simple observation on Heisenberg-like uncertainty principles
Yiyu Tang LAMA (UMR CNRS 8050), Université Gustave Eiffel, 5 Bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, France
Abstract:
A solution is given to a conjecture proposed recently by Y. Wigderson and A. Wigderson concerning a “Heisenberg-like” uncertainty principle. That conjecture is about the image of the map $ f \mapsto \frac{\|f\|_q\|\hat{f}\|_q}{\|f\|_2\|\hat{f}\|_2}, f\in \mathscr{S}(\mathbb{R})\setminus\{0\} $, where $\mathscr{S}(\mathbb{R}) $ stands for the Schwartz class of functions on the real line. Also, a more general question is answered, where the $L_2$ norm is replaced by the $L_p$ norm in the denominator.
Key words and phrases:
Fouier analysis, uncertainty principles, Hausdorff–Young inequality.
Received: 21.10.2021
Citation:
Yiyu Tang, “A simple observation on Heisenberg-like uncertainty principles”, Investigations on linear operators and function theory. Part 49, Zap. Nauchn. Sem. POMI, 503, POMI, St. Petersburg, 2021, 113–120
Linking options:
https://www.mathnet.ru/eng/znsl7103 https://www.mathnet.ru/eng/znsl/v503/p113
|
Statistics & downloads: |
Abstract page: | 107 | Full-text PDF : | 69 | References: | 29 |
|