Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 502, Pages 5–31 (Mi znsl7092)  

Fractional-matrix invariance of Diophantine systems of linear forms

V. G. Zhuravlev

Vladimir State University
References:
Abstract: It is known that under linear fractional unimodular transformations $\alpha \mapsto \alpha'= \frac{a \alpha + b} {c \alpha + d}$ the real numbers $\alpha $ and $\alpha'$ keep their expansions in the usual continued fractions up to a finite number of initial incomplete quotients. For this reason, these numbers have the same approximation speeds by their convergent fractions. This result is generalized to $(l \times k)$-matrices $ \alpha $. It is proved, if $ \alpha \mapsto \alpha'= (A \alpha + B)\cdot(C \alpha + D)^{- 1}$ for some fractional matrix unimodular transformation, then matrices $ \alpha $ and $ \alpha'$ have the same approximation speeds too. To prove this result we used the $\mathcal{L}$-algorithm based on the method of localizing units in algebraic number fields.
Key words and phrases: Diophantine approximations of linear forms, best approximations, the $\mathcal L$-algorithm.
Received: 19.12.2020
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. G. Zhuravlev, “Fractional-matrix invariance of Diophantine systems of linear forms”, Algebra and number theory. Part 4, Zap. Nauchn. Sem. POMI, 502, POMI, St. Petersburg, 2021, 5–31
Citation in format AMSBIB
\Bibitem{Zhu21}
\by V.~G.~Zhuravlev
\paper Fractional-matrix invariance of Diophantine systems of linear forms
\inbook Algebra and number theory. Part~4
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 502
\pages 5--31
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7092}
Linking options:
  • https://www.mathnet.ru/eng/znsl7092
  • https://www.mathnet.ru/eng/znsl/v502/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:65
    Full-text PDF :27
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024