Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 501, Pages 315–334 (Mi znsl7091)  

On spectral properties of stationary random processes connected by a special random time change

Yu. V. Yakubovich, O. V. Rusakov

Saint Petersburg State University
References:
Abstract: We consider three independent objects: a two-sided stationary random sequence $\boldsymbol{\xi} := (\ldots, \xi_{-1}, \xi_0, \xi_{1}, \ldots)$ with zero mean and finite variance, a standard Poisson process $\Pi$ and a subordinator $S$, that is a non-decreasing Lévy process. By means of reflection about zero we extend $\Pi$ and $S$ to the negative semi-axis and define a random time change $\Pi(S(t))$, $t\in\mathbb{R}$. Then we define a so-called PSI-process $\psi(t) := \xi_{\Pi(S(t))}$, $t\in\mathbb{R}$, which is wide-sense stationary. Notice that PSI-processes generalize pseudo-Poisson processes. The main aim of the paper is to express spectral properties of the process $\psi$ in terms of spectral characteristics of the sequence $\xi$ and the Lévy measure of the subordinator $S$. Using complex analytic techniques we derive a general formula for the spectral measure $G$ of the process $\psi$. We also determine exact spectral characteristics of $\psi$ for the following examples of $\boldsymbol{\xi}$: almost periodic sequence; finite order moving average; finite order autoregression. These results can find their applications in all areas where $L^2$-theory of stationary processes is used.
Key words and phrases: pseudo-Poisson process, stationary process, spectral properties, subordinator, compound Poisson process.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00646_а
Received: 24.06.2021
Document Type: Article
UDC: 519.218
Language: Russian
Citation: Yu. V. Yakubovich, O. V. Rusakov, “On spectral properties of stationary random processes connected by a special random time change”, Probability and statistics. Part 30, Zap. Nauchn. Sem. POMI, 501, POMI, St. Petersburg, 2021, 315–334
Citation in format AMSBIB
\Bibitem{YakRus21}
\by Yu.~V.~Yakubovich, O.~V.~Rusakov
\paper On spectral properties of stationary random processes connected by a special random time change
\inbook Probability and statistics. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 501
\pages 315--334
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7091}
Linking options:
  • https://www.mathnet.ru/eng/znsl7091
  • https://www.mathnet.ru/eng/znsl/v501/p315
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :72
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024