Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 501, Pages 302–314 (Mi znsl7090)  

Bahadur efficiencies of the Epps–Pulley test for normality

B. Ebner, N. Henze

Institute of Stochastics, Karlsruhe Institute of Technology (KIT), Englerstr. 2, D-76133 Karlsruhe
References:
Abstract: The test for normality suggested by Epps and Pulley [9] is a serious competitor to tests based on the empirical distribution function. In contrast to the latter procedures, it has been generalized to obtain a genuine affine invariant and universally consistent test for normality in any dimension. We obtain approximate Bahadur efficiencies for the test of Epps and Pulley, thus complementing recent results of Milos̆ević et al. (see [15]). For certain values of a tuning parameter that is inherent in the Epps–Pulley test, this test outperforms each of its competitors considered in [15], over the whole range of six close alternatives to normality.
Key words and phrases: test for normality, empirical characteristic function, Bahadur efficiency, eigenvalues of integral operators.
Received: 27.06.2021
Document Type: Article
UDC: 519.2
MSC: Primary 62F05; Secondary 62G20
Language: English
Citation: B. Ebner, N. Henze, “Bahadur efficiencies of the Epps–Pulley test for normality”, Probability and statistics. Part 30, Zap. Nauchn. Sem. POMI, 501, POMI, St. Petersburg, 2021, 302–314
Citation in format AMSBIB
\Bibitem{EbnHen21}
\by B.~Ebner, N.~Henze
\paper Bahadur efficiencies of the Epps--Pulley test for normality
\inbook Probability and statistics. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 501
\pages 302--314
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7090}
Linking options:
  • https://www.mathnet.ru/eng/znsl7090
  • https://www.mathnet.ru/eng/znsl/v501/p302
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:113
    Full-text PDF :30
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024