Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 318, Pages 246–276 (Mi znsl709)  

This article is cited in 10 scientific papers (total in 10 papers)

The solution of a spectral problem for the curl and the Stokes operators with periodic boundary

R. S. Saks

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: In this paper, the relations between eigenvalues and eigenfunctions of the curl operator and the Stokes operator (with periodic boundary condition) are considered. These relations show that the curl operator is a square root of the Stokes operator with $\nu=1$. The multiplicity of zero eigenvalue of the curl operator is infinite. The space $\mathbf{L}_2(Q,2\pi)$ is decomposed into a directe sum of the eigensubspaces of the operator curl. For any complex number $\lambda$, the equation $\operatorname{rot}\mathbf{u}+\lambda\mathbf{u}=\mathbf{f}$ and the Stokes equation $-\nu(\Delta v+\lambda^2v)+\nabla p=\mathbf{f}$, $\operatorname{div}v=0$, are solved.
Received: 15.11.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 2, Pages 3794–3811
DOI: https://doi.org/10.1007/s10958-006-0201-z
Bibliographic databases:
UDC: 517
Language: Russian
Citation: R. S. Saks, “The solution of a spectral problem for the curl and the Stokes operators with periodic boundary”, Boundary-value problems of mathematical physics and related problems of function theory. Part 36, Zap. Nauchn. Sem. POMI, 318, POMI, St. Petersburg, 2004, 246–276; J. Math. Sci. (N. Y.), 136:2 (2006), 3794–3811
Citation in format AMSBIB
\Bibitem{Sak04}
\by R.~S.~Saks
\paper The solution of a~spectral problem for the curl and the Stokes operators with periodic boundary
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~36
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 318
\pages 246--276
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl709}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2120802}
\zmath{https://zbmath.org/?q=an:1086.35071}
\elib{https://elibrary.ru/item.asp?id=9129111}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 136
\issue 2
\pages 3794--3811
\crossref{https://doi.org/10.1007/s10958-006-0201-z}
Linking options:
  • https://www.mathnet.ru/eng/znsl709
  • https://www.mathnet.ru/eng/znsl/v318/p246
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:604
    Full-text PDF :332
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024