Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 501, Pages 276–301 (Mi znsl7089)  

Extremal random beta polytopes

E. N. Simarovaab

a Saint Petersburg State University
b Euler International Mathematical Institute, St. Petersburg
References:
Abstract: The convex hull of several i.i.d. beta distributed random vectors in $\mathbb R^d$ is called the random beta polytope. Recently, the expected values of their intrinsic volumes, number of faces, normal and tangent angles and other quantities have been calculated, explicitly and asymptotically. In this paper, we aim to investigate the asymptotic behavior of the beta polytopes with extremal intrinsic volumes. We suggest a conjecture and solve it in dimension $2$. To this end, we obtain some general limit relation for a wide class of $U$-$\max$ statistics whose kernels include the perimeter and the area of the convex hull of the arguments.
Key words and phrases: beta distribution, $U$-$\max$ statistics, random polytope, Weibull distribution, Poisson approximation, random perimeter, random area.
Received: 08.08.2021
Document Type: Article
UDC: 519.2
Language: Russian
Citation: E. N. Simarova, “Extremal random beta polytopes”, Probability and statistics. Part 30, Zap. Nauchn. Sem. POMI, 501, POMI, St. Petersburg, 2021, 276–301
Citation in format AMSBIB
\Bibitem{Sim21}
\by E.~N.~Simarova
\paper Extremal random beta polytopes
\inbook Probability and statistics. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 501
\pages 276--301
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7089}
Linking options:
  • https://www.mathnet.ru/eng/znsl7089
  • https://www.mathnet.ru/eng/znsl/v501/p276
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :26
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024