Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 500, Pages 37–50 (Mi znsl7065)  

The structure of formal modules as Galois modules in cyclic unramified $p$-extensions

S. V. Vostokov, V. M. Polyakov

Saint Petersburg State University
References:
Abstract: The structure of the formal module $F(\mathfrak{M})$ for a chain of finite extensions $M/L/K$, where $M/L$ is an unramified $p$-extension, is studied. The triviality of the first Galois cohomology of a formal module for an unramified extension for any degree of a prime ideal is shown. The presentation of the investigated formal module is constructed in terms of generators and relations. As an application of the main result, the structure of a formal module for generalized Lubin–Tate formal groups is obtained.
Key words and phrases: one-dimensional local fields, formal modules, generalized Lubin-Tate formal modules.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1620
Received: 08.11.2020
Document Type: Article
UDC: 512.625
Language: Russian
Citation: S. V. Vostokov, V. M. Polyakov, “The structure of formal modules as Galois modules in cyclic unramified $p$-extensions”, Problems in the theory of representations of algebras and groups. Part 37, Zap. Nauchn. Sem. POMI, 500, POMI, St. Petersburg, 2021, 37–50
Citation in format AMSBIB
\Bibitem{VosPol21}
\by S.~V.~Vostokov, V.~M.~Polyakov
\paper The structure of formal modules as Galois modules in cyclic unramified $p$-extensions
\inbook Problems in the theory of representations of algebras and groups. Part~37
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 500
\pages 37--50
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7065}
Linking options:
  • https://www.mathnet.ru/eng/znsl7065
  • https://www.mathnet.ru/eng/znsl/v500/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :33
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024