Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 499, Pages 22–37 (Mi znsl7059)  

I

Non-saturated estimates of the Kotelnikov formula error

O. L. Vinogradov

Saint Petersburg State University
References:
Abstract: We estimate the error of approximation by Kotelnikov sums
$$U_Tf(x)= \sum_{j\in\Bbb Z}f\left(\frac{j}{T}\right)\mathrm{sinc}(Tx-j),\quad T>0,\quad \mathrm{sinc}{z}=\frac{\sin{\pi z}}{\pi z}.$$
Let $f\in\mathbf{A}$, i.e. $f(x)=\int_{\Bbb R}g(y)e^{ixy}\,dy$, $g\in L_1(\Bbb R)$, and let $\|f\|_\mathbf{A}=\int_{\Bbb R}|g|$ iz Wiener norm of $f$. Then the sharp inequality
$$\|f-U_Tf\|_{\mathbf A}\leqslant 2A_{T\pi}(f)_{\mathbf A}$$
holds, where $A_{\sigma}(f)_{\mathbf{A}}$ is the best approximation of $f$ in the Wiener norm by entire functions of type not exceeding $\sigma$. We also establish non-saturated uniform estimates.
Key words and phrases: Kotelnikov formula, best approximation, Wiener algebra.
Funding agency Grant number
Russian Science Foundation 18-11-00055
Received: 10.11.2020
Document Type: Article
Language: Russian
Citation: O. L. Vinogradov, “Non-saturated estimates of the Kotelnikov formula error”, Investigations on applied mathematics and informatics. Part I, Zap. Nauchn. Sem. POMI, 499, POMI, St. Petersburg, 2021, 22–37
Citation in format AMSBIB
\Bibitem{Vin21}
\by O.~L.~Vinogradov
\paper Non-saturated estimates of the Kotelnikov formula error
\inbook Investigations on applied mathematics and informatics. Part~I
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 499
\pages 22--37
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7059}
Linking options:
  • https://www.mathnet.ru/eng/znsl7059
  • https://www.mathnet.ru/eng/znsl/v499/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :37
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024