|
Zapiski Nauchnykh Seminarov POMI, 2020, Volume 495, Pages 198–208
(Mi znsl7056)
|
|
|
|
Random sections of spherical convex bodies
T. D. Moseevaa, A. S. Tarasovb, D. N. Zaporozhetsc a Euler International Mathematical Institute, St. Petersburg
b Saint Petersburg State University
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Abstract:
Let $K\subset\mathbb S^{d-1}$ be a convex spherical body. Denote by $\Delta(K)$ the distance between two random points in $K$ and denote by $\sigma(K)$ the length of a random chord of $K$. We explicitly express the distribution of $\Delta(K)$ viathe distribution of $\sigma(K)$. From this we find the density of distribution of $\Delta(K)$ when $K$ is a spherical cap.
Key words and phrases:
Crofton formula, mean distance, spherical Blaschke–Petkantschin formula, spherical integral geometry, spherical convex body, random chord.
Received: 19.10.2020
Citation:
T. D. Moseeva, A. S. Tarasov, D. N. Zaporozhets, “Random sections of spherical convex bodies”, Probability and statistics. Part 29, Zap. Nauchn. Sem. POMI, 495, POMI, St. Petersburg, 2020, 198–208
Linking options:
https://www.mathnet.ru/eng/znsl7056 https://www.mathnet.ru/eng/znsl/v495/p198
|
Statistics & downloads: |
Abstract page: | 105 | Full-text PDF : | 45 | References: | 24 |
|