Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 499, Pages 236–247 (Mi znsl7051)  

II

Improving classification robustness for noisy texts with robust word vectors

V. Malykhabc, V. Lyalinb

a St. Petersburg Department of Steklov Institute of Mathematics, nab. r. Fontanki, 27, 191023, St. Petersburg, Russia
b Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701, Dolgoprudny, Russia
c Institute for Systems Analysis, pr. 60-letiya Oktyabrya, 9, 117312, Moscow, Russia
References:
Abstract: Text classification is a fundamental task in natural language processing, and a huge body of research has been devoted to it. However, there has been little work on investigating noi se robustness for the developed approaches. In this work, we are bridging this gap, introducing results on noise robustness testing of modern text classification architectures for Engl ish and Russian languages. We benchmark the CharCNN and SentenceCNN models and introduce a new model, called RoVe, that we show to be the most robust to noise.
Key words and phrases: word vectors, distributed representations, d natural language processing.
Funding agency Grant number
National Technological Initiative
PAO Sberbank 0000000007417F630002
This work was supported by the National Technology Initiative and PAO Sberbank project ID 0000000007417F630002.
Received: 12.01.2019
Document Type: Article
UDC: 004.85
Language: English
Citation: V. Malykh, V. Lyalin, “Improving classification robustness for noisy texts with robust word vectors”, Investigations on applied mathematics and informatics. Part I, Zap. Nauchn. Sem. POMI, 499, POMI, St. Petersburg, 2021, 236–247
Citation in format AMSBIB
\Bibitem{MalLya21}
\by V.~Malykh, V.~Lyalin
\paper Improving classification robustness for noisy texts with robust word vectors
\inbook Investigations on applied mathematics and informatics. Part~I
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 499
\pages 236--247
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7051}
Linking options:
  • https://www.mathnet.ru/eng/znsl7051
  • https://www.mathnet.ru/eng/znsl/v499/p236
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :43
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024