Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2021, Volume 499, Pages 222–235 (Mi znsl7050)  

II

Named entity recognition in Russian using multi-task LSTM-CRF

D. Mazitova, I. Alimovaa, E. Tutubalinab

a Kazan Federal University, Kazan, Russia, 420008
b Lomonosov Moscow State University, Kolmogorova str., 1, Moscow 119991, Russia
References:
Abstract: Named entity recognition (NER) is aimed at obtaining the important information from the unstructured data presented in the form of natural language texts. In this paper, we investigate the efficiency of modern multi-task NER approach on Russian corpora by employing several different NER datasets and a dataset of part-of-speech (POS) tags. We apply a state-of-the-art neural architecture based on bidirectional LSTMs and conditional random fields. Convolutional neural networks were utilized to learn character-level features. We carry out an extensive experimental evaluation over three standard datasets of news written in Russian. The proposed multi-task model achieve states-of-the-art results with an F1 score of 88.04% on Gareev's dataset and an F1 score of 99.49% on Person-1000 dataset.
Key words and phrases: named entity recognition, NER, LSTM, CRF, multi-task learning.
Funding agency Grant number
Russian Science Foundation 20-11-20166
This work was supported by the Russian Science Foundation grant no. 20-11-20166.
Received: 14.01.2019
Document Type: Article
UDC: 004.85
Language: English
Citation: D. Mazitov, I. Alimova, E. Tutubalina, “Named entity recognition in Russian using multi-task LSTM-CRF”, Investigations on applied mathematics and informatics. Part I, Zap. Nauchn. Sem. POMI, 499, POMI, St. Petersburg, 2021, 222–235
Citation in format AMSBIB
\Bibitem{MazAliTut21}
\by D.~Mazitov, I.~Alimova, E.~Tutubalina
\paper Named entity recognition in Russian using multi-task LSTM-CRF
\inbook Investigations on applied mathematics and informatics. Part~I
\serial Zap. Nauchn. Sem. POMI
\yr 2021
\vol 499
\pages 222--235
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7050}
Linking options:
  • https://www.mathnet.ru/eng/znsl7050
  • https://www.mathnet.ru/eng/znsl/v499/p222
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :79
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024