Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 498, Pages 5–17 (Mi znsl7031)  

This article is cited in 2 scientific papers (total in 2 papers)

I

Scaling entropy of unstable systems

G. A. Veprev

Leonhard Euler International Mathematical Institute, St. Petersburg, Russia
Full-text PDF (170 kB) Citations (2)
References:
Abstract: In this paper, we study the slow entropy-type invariant of a dynamic system proposed by A. M. Vershik. We provide an explicit construction of a system that has an empty class of scaling entropy sequences. For this unstable case, we introduce an upgraded notion of the invariant, generalize the subadditivity results, and provide an exhaustive series of examples.
Key words and phrases: zero entropy, scaling entropy, subadditivity, nonstable systems.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1619
Leonhard Euler International Charitable Foundation for Mathematics
The work is supported by the Ministry of Science and Higher Education of the Russian Federation, agreement No. 075-15-2019-1619. The work is also supported by the V. A. Rokhlin scholarship for young mathematicians.
Received: 20.09.2020
Document Type: Article
UDC: 517.987.5
Language: English
Citation: G. A. Veprev, “Scaling entropy of unstable systems”, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Zap. Nauchn. Sem. POMI, 498, POMI, St. Petersburg, 2020, 5–17
Citation in format AMSBIB
\Bibitem{Vep20}
\by G.~A.~Veprev
\paper Scaling entropy of unstable systems
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXXI
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 498
\pages 5--17
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7031}
Linking options:
  • https://www.mathnet.ru/eng/znsl7031
  • https://www.mathnet.ru/eng/znsl/v498/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :24
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024