Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 497, Pages 124–169 (Mi znsl7030)  

Upper and lower bounds on the height of proofs in sequent calculus for intuitionistic logic

V. P. Orevkov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We prove upper and lower bounds on the height of proofs in sequent calculus for intuitionistic logic for the case when cut formulas may only contain essentially positive occurrences of the existential quantifier. We consider the cases of both proofs with and proofs without function symbols.
Key words and phrases: intuitionistic predicate calculus, cut elimination, upper bounds, lower bounds.
Received: 10.12.2020
Document Type: Article
UDC: 519
Language: Russian
Citation: V. P. Orevkov, “Upper and lower bounds on the height of proofs in sequent calculus for intuitionistic logic”, Combinatorics and graph theory. Part XII, Zap. Nauchn. Sem. POMI, 497, POMI, St. Petersburg, 2020, 124–169
Citation in format AMSBIB
\Bibitem{Ore20}
\by V.~P.~Orevkov
\paper Upper and lower bounds on the height of proofs in sequent calculus for intuitionistic logic
\inbook Combinatorics and graph theory. Part~XII
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 497
\pages 124--169
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7030}
Linking options:
  • https://www.mathnet.ru/eng/znsl7030
  • https://www.mathnet.ru/eng/znsl/v497/p124
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :33
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024