Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 497, Pages 53–79 (Mi znsl7027)  

Criterion for the existence of such a cycle that vertices beyond this cycle are independent

N. A. Karol'

New Economic School
References:
Abstract: This paper contains a criterion for the existence of such a cycle that the vertices beyond this cycle are independent in terms of minimum vertex degree. More specifically, if $G$ is a $2$-connected graph, $v(G) = n$ and $\delta(G) \geq \frac{n + 2}{3}$, then $G$ has a cycle such that vertices beyond this cycle are independent.
Key words and phrases: independent set, biconnected graph, minimum degree.
Received: 01.11.2020
Document Type: Article
UDC: 519.17
Language: Russian
Citation: N. A. Karol', “Criterion for the existence of such a cycle that vertices beyond this cycle are independent”, Combinatorics and graph theory. Part XII, Zap. Nauchn. Sem. POMI, 497, POMI, St. Petersburg, 2020, 53–79
Citation in format AMSBIB
\Bibitem{Kar20}
\by N.~A.~Karol'
\paper Criterion for the existence of such a cycle that vertices beyond this cycle are independent
\inbook Combinatorics and graph theory. Part~XII
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 497
\pages 53--79
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7027}
Linking options:
  • https://www.mathnet.ru/eng/znsl7027
  • https://www.mathnet.ru/eng/znsl/v497/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :21
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024