Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 496, Pages 97–100 (Mi znsl7017)  

The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$

Kh. D. Ikramov

Lomonosov Moscow State University
References:
Abstract: It is shown that every solution of the matrix equation in the title of the paper, where $n = 2m$, can be transformed by a symmetric permutation of rows and columns to the direct sum of two triangular Toeplitz matrices of order $m$.
Key words and phrases: congruences, Sylvester equations, equations of the Sylvester type, composition type, level reversal.
Received: 17.02.2020
Document Type: Article
UDC: 512.643
Language: Russian
Citation: Kh. D. Ikramov, “The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$”, Computational methods and algorithms. Part XXXIII, Zap. Nauchn. Sem. POMI, 496, POMI, St. Petersburg, 2020, 97–100
Citation in format AMSBIB
\Bibitem{Ikr20}
\by Kh.~D.~Ikramov
\paper The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$
\inbook Computational methods and algorithms. Part~XXXIII
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 496
\pages 97--100
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7017}
Linking options:
  • https://www.mathnet.ru/eng/znsl7017
  • https://www.mathnet.ru/eng/znsl/v496/p97
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :51
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024