Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 496, Pages 87–93 (Mi znsl7015)  

Congruence verification for involutive matrices

Kh. D. Ikramov

Lomonosov Moscow State University
References:
Abstract: A finite computational process using only arithmetic operations is called a rational algorithm. Presently, no rational algorithm for checking the congruence of arbitrary complex matrices $A$ and $B$ is known. The situation may be different if both $A$ and $B$ belong to a special matrix class. For instance, there exist rational algorithms for the cases where both matrices are Hermitian, unitary, or accretive. In this publication, we propose a rational algorithm for checking the congruence of involutive matrices $A$ and $B$.
Key words and phrases: involutive matrix (involution), congruences, canonical form, cosquare, rational algorithm.
Received: 03.02.2020
Document Type: Article
UDC: 512.643.8
Language: Russian
Citation: Kh. D. Ikramov, “Congruence verification for involutive matrices”, Computational methods and algorithms. Part XXXIII, Zap. Nauchn. Sem. POMI, 496, POMI, St. Petersburg, 2020, 87–93
Citation in format AMSBIB
\Bibitem{Ikr20}
\by Kh.~D.~Ikramov
\paper Congruence verification for involutive matrices
\inbook Computational methods and algorithms. Part~XXXIII
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 496
\pages 87--93
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7015}
Linking options:
  • https://www.mathnet.ru/eng/znsl7015
  • https://www.mathnet.ru/eng/znsl/v496/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:143
    Full-text PDF :66
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024