Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 496, Pages 61–86 (Mi znsl7014)  

This article is cited in 2 scientific papers (total in 2 papers)

Relation graphs of the sedenion algebra

A. E. Gutermanabc, S. A. Zhilinabc

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Lomonosov Moscow State University
c Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (433 kB) Citations (2)
References:
Abstract: Let $\mathbb{S}$ denote the algebra of sedenions and let $\Gamma_O(\mathbb{S})$ denote its orthogonality graph. We observe that any pair of zero divisors in $\mathbb{S}$ produces a double hexagon in $\Gamma_O(\mathbb{S})$. The set of vertices of a double hexagon can be extended to a basis of $\mathbb{S}$ that has a convenient multiplication table. We explicitly describe the set of vertices of an arbitrary connected component of $\Gamma_O(\mathbb{S})$ and find its diameter. Then we establish a bijection between the connected components of $\Gamma_O(\mathbb{S})$ and the lines in the imaginary part of the octonions. Finally, we consider the commutativity graph of the sedenions and discover that all elements whose imaginary parts are zero divisors belong to the same connected component, and its diameter lies in between $3$ and $4$.
Key words and phrases: Cayley–Dickson algebras, sedenions, relation graphs, connected components.
Funding agency Grant number
Russian Science Foundation 17-11-01124
Received: 01.10.2020
Document Type: Article
UDC: 512.643+512.552
Language: Russian
Citation: A. E. Guterman, S. A. Zhilina, “Relation graphs of the sedenion algebra”, Computational methods and algorithms. Part XXXIII, Zap. Nauchn. Sem. POMI, 496, POMI, St. Petersburg, 2020, 61–86
Citation in format AMSBIB
\Bibitem{GutZhi20}
\by A.~E.~Guterman, S.~A.~Zhilina
\paper Relation graphs of the sedenion algebra
\inbook Computational methods and algorithms. Part~XXXIII
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 496
\pages 61--86
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7014}
Linking options:
  • https://www.mathnet.ru/eng/znsl7014
  • https://www.mathnet.ru/eng/znsl/v496/p61
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :55
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024